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Figure 1: Pearl’s Ladder of Causality



Figure 2: Pearl’s Ladder of Causality
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Figure 3: Pearl’s Ladder of Causality
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Exchangeable
Let X1, X2, . . . , Xn be a finite sequence of
random variables. For any permutation π
of {1, . . . , n}, it satisfies:

P(Xπ(1), . . . , Xπ(n)) = P(X1, . . . , Xn) (1)

Then the finite sequence is exchangeable.
Infinite exchangeable sequence if above
holds for any N ∈ N.



De Finetti
Let (Xn)n∈N be an infinite sequence of binary1 random variables. The sequence is
exchangeable if and only if there exists a latent variable θ such that X1, X2, . . . are
conditionally i. i. d. given θ.

P(x1, . . . ,xn) =

∫ n∏
i=1

p(xi|θ)dµ(θ) (2)

1De Finetti holds for categorical and continuous random variables.
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Bayesian Model
• D = {x1, . . . , xn}
• Statistical ModelM = {P(· | θ) | θ ∈ T }
• Prior θ ∼ π



De Finetti Applications
Let (Xn, Yn)n∈N be an infinite exchangeable sequence of binary random variables. De
Finetti representation theorem states that

P(x1,y1, . . . ,xn,yn) =

∫ n∏
i=1

p(xi,yi|θ)dµ(θ) (4)

X1 Y1

X2 Y2

θ



Independent Causal Mechanism

The causal generative process of a system’s variables is composed of autonomous
modules that do not inform and do not influence each other.

P(X1, . . . , Xn) =
∏

i

P(Xi | PAi)︸ ︷︷ ︸
causal conditional

(5)

Example

X Y =⇒ ‘‘P(Y | X) ⊥⊥ P(X)”



Causal De Finetti

Let {Xn, Yn}n∈N
2 be an infinite sequence of binary random variables.

The sequence is

• exchangeable, and

• ∀n ∈ N : Y[n] ⊥⊥ Xn+1 | X[n] 3 → ‘‘P(Y | X) ⊥⊥ P(X)”

if and only if there exists two independent latent variables θ, ψ such that X1, X2, . . .
are conditionally i. i. d. given θ and Y1, Y2, . . . are conditional i. i. d. given ψ and its
corresponding Xi.

P(x1,y1, . . . ,xn,yn) =

∫ n∏
i=1

p(yi | xi, ψ)p(xi | θ)dµ(θ)dν(ψ) (6)

2Can extend to multivariate version
3[n] := {1, . . . , n}



Disentangle the Latents

De Finetti:

X1 Y1

X2 Y2

θ, ψ

Causal De Finetti:

X1 Y1

Xe2 Ye2

θ ψ



Generalization
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Out-of-Variable Genralization

X1

X2

X3

Y

fS(x1, x2) = E[Y | X1, X2]

D := (X1, X2, Y), (X2, X3)

fT(x2, x3) = E[Y | X2, X3]

Figure 4: Toy example: (a) the blue box includes variables observed in the source environment,
and the orange box those in the target environment. A directed edge represents a causal
relationship between two variables. The goal is to improve the zero-shot (i.e., without
additional data) prediction of Y in the target environment using the source environment.



Out-of-Variable Generalization
X1

X2

X3

Y

• Consider Y = ϕ(X1, X2, X3) + ϵ

• Residual Distribution: Y− fS(X1, X2)

• Moments of the residual distribution:

E[(Y− fS(x1, x2))
n | x1, x2]

• Entangled interaction between noise ϵ and ∂ϕ
∂X3

∣∣
x1,x2,µ3

E[(Y− fS(x1, x2))
n | x1, x2] =

n∑
k=0

(
n
k

)
E[ϵk](

∂ϕ

∂X3

∣∣∣∣
x1,x2,µ3

)n−kE[(X3 − µ3)
n−k]



Out-of-Variable Generalization
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• Consider Y = ϕ(X1, X2, X3) + ϵ

• Residual Distribution: Y− fS(X1, X2)
• Moments of the residual distribution:

E[(Y− fS(x1, x2))
n | x1, x2]

• Entangled interaction between noise ϵ and ∂ϕ
∂X3

∣∣
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When n = 3:

E[(Y− fS(x1, x2))
3 | x1, x2] = (

∂ϕ

∂X3

∣∣∣∣
x1,x2,µ3

)3E[(X3 − µ3)
3] + E[ϵ3]



Experiments

Proposed Optimal
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