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Exchangeable

Let X1, Xo, ..., X, be a finite sequence of
random variables. For any permutation 7
of {1,...,n}, it satisfies:

Xﬂ(n)) = P(Xl, .

]P)(Xﬂ.(l),..., ,Xn) ()

Then the finite sequence is exchangeable.
Infinite exchangeable sequence if above
holds for any N € N.



De Finetti

Let (X,)nen be an infinite sequence of binary' random variables. The sequence is
exchangeable if and only if there exists a latent variable # such that X, Xo, ... are
conditionally i.i.d. given 6.

Plxi,. .. %) = [ [[p(xl6)an(0)

"De Finetti holds for categorical and continuous random variables.
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De Finetti

Let (X,)nen be an infinite sequence of binary random variables. The sequence is
exchangeable if and only if there exists a latent variable 6 such that X1, Xa, ... are
conditionally i.i.d. given 6.

P(Xy,...,X,) = /Hp(x,\@)du(ﬂ)
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Bayesian Model
* D={x1,...,x;}
+ Statistical Model M = {P(- | 0) | 0 € T}

* Priorf ~



De Finetti Applications

Let (X,, Y»)nen be an infinite exchangeable sequence of binary random variables. De
Finetti representation theorem states that

]P(X17Y17-~-7Xn73’n) :/HP(X,,Y,‘Q)dM(e) @
i=1
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7

—O



Independent Causal Mechanism

The causal generative process of a system'’s variables is composed of autonomous
modules that do not inform and do not influence each other.

P(Xy,....%) = ][ P(x | Pa) 5)

i .
causal conditional

Example

®—>® = “P(v|x) LPX)”



Causal De Finetti

Let {X,, Y,,},,eN2 be an infinite sequence of binary random variables.
The sequence is

+ exchangeable, and
s VneEN: Y LXoy1 [ X ® — “PY[X) L P(X)”
if and only if there exists two independent latent variables 6, v such that X1, Xo, . . .

are conditionally i.i.d. given 6 and Y1, Yo, ... are conditional i.i.d. given 1 and its
corresponding X;.

Py X = [ 1o %00 OauO)arw) @
i=1

2Can extend to multivariate version

35 :={1,...,n}



Disentangle the Latents

De Finetti: Causal De Finetti:
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Generalization
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Out-of-Variable Genralization

oN

®

D= (X17X27 Y)) (X27X3)

fS(X17X2) - ]E[Y | X17X2]

fr(x2,x3) = E[Y | X2, X]

Figure 4: Toy example: (a) the blue box includes variables observed in the source environment,
and the orange box those in the target environment. A directed edge represents a causal
relationship between two variables. The goal is to improve the zero-shot (i.e., without
additional data) prediction of Y in the target environment using the source environment.
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Out-of-Variable Generalization

« Consider Y = ¢(X1, X2, X3) + €

+ Residual Distribution: ¥ — fs(X1, X2)

®

* Moments of the residual distribution:

E[(Y = fs(x1,%2))" | x1,x2]

+ Entangled interaction between noise € and 29
OX3 1x1 %2, 113

)" 'El(Xs — p13)"™"]

X1,X2,143
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Out-of-Variable Generalization

« Consider Y = ¢(X1,X2,X3) + €

+ Residual Distribution: ¥ — fs(X1, X2)
* Moments of the residual distribution:

E[(Y — fs(x1,x2))" | x1,x2]

®

+ Entangled interaction between noise € and 29
OX3 1x1 %2, 113

Whenn = 3:

E[(Y — fs(x1,x2))* | x,00] = (5% )’E[(Xs — 3)°] + E[¢’]



Experiments
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